Default
Question
Find the derivative of $\dfrac{cos x}{x^2}$
Solution
The correct answer is $\dfrac{-(xsin x + 2cos x)}{x^3}$
Explanation
As per Quotient Rule,
$\dfrac{dy}{dx}$ = $\dfrac{v \dfrac{du}{dx} - u \dfrac{dv}{dx}}{v^2}$
$ ∴ \dfrac{dy}{dx}$ = $\dfrac{x^2 D(cos x) - cos x D(x^2)}{x^4}$
= $\dfrac{x^2 (-sin x) - cos x (2x)}{x^4}$
= $ -x \dfrac{x (sin x) + cos x (2)}{x^4}$
= $\dfrac{-(xsin x + 2cos x)}{x^3}$
0de1f0fa-2cb4-11ed-aec7-5405dbb1cb03